Abstract

A role for mitochondrial dysfunction in neurodegenerative disease is gaining increasing support. Mitochondrial dysfunction may be linked to neurodegenerative diseases through a variety of different pathways, including free-radical generation, impaired calcium buffering and the mitochondrial permeability transition. This can lead to both apoptotic and necrotic cell death. Recent evidence has shown that there is a mitochondrial defect in Friedreich's ataxia, which leads to increased mitochondrial iron content, that appears to be linked to increased free-radical generation. There is evidence that the point mutations in superoxide dismutase which are associated with amyotrophic lateral sclerosis may contribute to mitochondrial dysfunction. There is also evidence for bioenergetic defects in Huntington's disease. Studies of cybrid cell lines have implicated mitochondrial defects in both Parkinson's disease and Alzheimer's disease. If mitochondrial dysfunction plays a role in neurodegenerative diseases then therapeutic strategies such as coenzyme Q10 and creatine may be useful in attempting to slow the disease process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call