Abstract
Mitochondrial microRNAs (mitomiRs) critically orchestrate mitochondrial functions. Spatial imaging of mitomiRs is essential to understand its clinical value in diagnosis and prognosis. However, the direct monitoring of mitomiRs in living cells remains a key challenge. Herein, we report an AIE nanoreporter strategy for mitomiRs imaging in living cells through pH-controlled exonuclease (Exo)-assisted target cycle signal amplification. The AIE-labeled DNA detection probes are conjugated on Exo III encapsulated polymeric nanoparticles (NPs) via consecutive adenines (polyA). The amplified sensing functions are off during the cytoplasm delivery process, and it can be spatially switched from off to on when in the alkaline mitochondria (about pH 8) after triphenylphosphonium (TPP)-mediated mitochondrial targeting. Where the NPs degraded to release Exo III and cancer-specific mitomiRs hybridize with AIE-labeled DNA detection probes to expose the cleavage site of released Exo III, enabling spatially restricted mitomiRs imaging. The mitomiRs expression fluctuation was also realized. This study contributes to a facile strategy that could easily extend to a broad application for the understanding of mitomiRs-related pathological processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.