Abstract

Copper (Cu) is one of the common heavy metal pollutants in the environment, and its toxic mechanisms have been extensively studied. However, the immunotoxicity induced by Cu remains rarely reported, and the effects of Cu on endoplasmic reticulum stress and mitochondria-mediated apoptosis have been little studied in the spleen. In this study, pigs were fed with different contents of Cu (10, 125, and 250mg/kg Cu) for 80days to establish a toxicity model. The results showed the Cu exposure triggered endoplasmic reticulum stress in the spleen, as evidenced by increased mRNA and protein levels of GRP94, GRP78, CHOP, XBP1, ATF6, and JNK; the positive rate of GRP78 increased by immunofluorescence analysis. Additionally, mitochondrial fission and fusion homeostasis were disrupted, the expression levels of mitochondrial dynamics-related genes Mfn1, Mfn2, and OPA1 decreased, DRP1 increased, and the positive rate of Mfn1 decreased by immunofluorescence analysis. Furthermore, Cu exposure could induce apoptosis, as demonstrated by the increased expression level of related proteins and genes Bak, Bax, Caspase-3, P53, and Cytc. In conclusion, these results suggest chronic Cu exposure can lead to endoplasmic reticulum stress and imbalance in mitochondrial dynamics and induced apoptosis of pig spleen, and these results provided new insights into the underlying mechanism of Cu exposure caused splenic toxicity, which has public health implications where humans and animals are exposed to copper contamination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call