Abstract

Mitochondria contribute to neuronal function not only via their ability to generate ATP, but also via their ability to buffer large Ca(2+) loads. This review summarizes evidence that mitochondrial Ca(2+) sequestration is especially important for sustaining the function of vertebrate motor nerve terminals during repetitive stimulation. Motor terminal mitochondria can sequester large amounts of Ca(2+) because they have mechanisms for limiting both the mitochondrial depolarization and the increase in matrix free [Ca(2+)] associated with Ca(2+) influx. In mice expressing mutations of human superoxide dismutase -1 (SOD1) that cause some cases of familial amyotrophic lateral sclerosis (fALS), motor terminals degenerate well before the death of motor neuron cell bodies. This review presents evidence for early and progressive mitochondrial dysfunction in motor terminals of mutant SOD1 mice (G93A, G85R). This dysfunction would impair mitochondrial ability to sequester stimulation-associated Ca(2+) loads, and thus likely contributes to the early degeneration of motor terminals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.