Abstract

Neurons are exquisitely dependent on quality control systems to maintain a healthy intracellular environment. A permanent assessment of protein and organelle “quality” allows a coordinated action between repair and clearance of damage proteins and dysfunctional organelles. Impairments in the intracellular clearance mechanisms in long-lived postmitotic cells, like neurons, result in the progressive accumulation of damaged organelles and aggregates of aberrant proteins. Using cells bearing Parkinson disease (PD) patients’ mitochondria, we demonstrated that aberrant accumulation of autophagosomes in PD, commonly interpreted as an abnormal induction of autophagy, is instead due to defective autophagic clearance. This defect is a consequence of alterations in the microtubule network driven by mitochondrial dysfunction that hinder mitochondria and autophagosome trafficking. We uncover mitochondria and microtubule-directed traffic as main players in the regulation of autophagy in PD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.