Abstract

Bystander effects induced by cytoplasmic irradiation have been reported recently. However, the mechanism(s) underlying, such as the functional role of mitochondria, is not clear. In the present study, we used either mtDNA-depleted (ρ0) AL or normal (ρ+) AL cells as irradiated donor cells and normal human skin fibroblasts as receptor cells in a series of medium transfer experiments to investigate the mitochondria-related signal process. Our results indicated that mtDNA-depleted cells or normal AL cells treated with mitochondrial respiratory chain function inhibitors had an attenuated γ-H2AX induction, which indicates that mitochondria play a functional role in bystander effects. Moreover, it was found that treatment of normal AL donor cells with specific inhibitors of NOS, or inhibitor of mitochondrial calcium uptake (ruthenium red) significantly decreased γ-H2AX induction and that radiation could stimulate cellular NO and O2•− production in irradiated ρ+ AL cells, but not in ρ0 AL cells. These observations, together with the findings that ruthenium red treatment significantly reduced the NO and O2•− levels in irradiated ρ+ AL cells, suggest that radiation-induced NO derived from mitochondria might be an intracellular bystander factor and calcium-dependent mitochondrial NOS might play an essential role in the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.