Abstract

The coherence of mitochondrial biogenesis relies on spatiotemporally coordinated associations of 800-1000 proteins mostly encoded in the nuclear genome. We report the development of new quantitative analyses to assess the role of local protein translation in the construction of molecular complexes. We used real-time PCR to determine the cellular location of 112 mRNAs involved in seven mitochondrial complexes. Five typical cases were examined by an improved FISH protocol. The proteins produced in the vicinity of mitochondria (MLR proteins) were, almost exclusively, of prokaryotic origin and are key elements of the core construction of the molecular complexes; the accessory proteins were translated on free cytoplasmic polysomes. These two classes of proteins correspond, at least as far as intermembrane space (IMS) proteins are concerned, to two different import pathways. Import of MLR proteins involves both TOM and TIM23 complexes whereas non-MLR proteins only interact with the TOM complex. Site-specific translation loci, both outside and inside mitochondria, may coordinate the construction of molecular complexes composed of both nuclearly and mitochondrially encoded subunits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.