Abstract
Two important hubs have emerged as cutting edge areas of research across a diverse array of medical conditions, the gut microbiome and mitochondria. This article highlights the role of melatonin in modulating changes in both the gut and mitochondria. The gut microbiome, especially via its production of the small chain fatty acid, butyate, can have a significant impact on immune inflammatory processes. Lower levels of butyrate producing bacteria can increase gut permeability, thereby increasing immune-inflammatory activity. Butyrate may also modulate immune and other cells via the regulation of the content of exosomes from intestinal epithelial cells. Butyrate also induces N-acetylserotonin and melatonin synthesis in the gut, suggesting that some of the effects of butyrate may be mediated via its induction of the melatonergic pathway. The induction of melatonin by butyrate may feed back on the microbiome via melatonin increasing gut bacteria swarming, as well as melatonin optimizing gut barrier and mitochondria functioning. As butyrate readily crosses into the circulation it is likely that the immune- and glia-dampening effects of butyrate also involve the induction of melatonin in these reactive cells. Butyrate also positively modulates mitochondria functioning, suggesting that butyrate, both directly and via melatonin, will have significant impacts on gut, immune, glia and other cells, via mitochondria regulation. Other factors that act to regulate melatonin, including dietary factors and stress, will therefore act to modulate many of butyrate's effects. The regulation of melatonin at these two important hubs has significant treatment and classification implications across a wide array of medical conditions. Overall, gut dysbiosis has a significant impact on central and systemic homeostasis, via decreased butyrate and melatonin driving suboptimal mitochondria functioning. This has implications for the pathoetiology and pathophysiology of a host of medical conditions associated with gut dysbiosis and decreased melatonin production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.