Abstract

Cellular organelles, such as mitochondria and endoplasmic reticulum (ER), create a network to perform a variety of functions. These highly curved structures are folded into various shapes to form a dynamic network depending on the cellular conditions. Visualization of this network between mitochondria and ER has been attempted using super-resolution fluorescence imaging and light microscopy; however, the limited resolution is insufficient to observe the membranes between the mitochondria and ER in detail. Transmission electron microscopy provides good membrane contrast and nanometer-scale resolution for the observation of cellular organelles; however, it is exceptionally time-consuming when assessing the three-dimensional (3D) structure of highly curved organelles. Therefore, we observed the morphology of mitochondria and ER via correlative light-electron microscopy (CLEM) and volume electron microscopy techniques using enhanced ascorbate peroxidase 2 and horseradish peroxidase staining. An en bloc staining method, ultrathin serial sectioning (array tomography), and volume electron microscopy were applied to observe the 3D structure. In this protocol, we suggest a combination of CLEM and 3D electron microscopy to perform detailed structural studies of mitochondria and ER.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.