Abstract
As the main systemic treatment for triple-negative breast cancer (TNBC), the bleak medical prognosis of chemotherapy resulted in impaired life quality by tumor recurrence and metastasis. The feasible cancer starvation therapy could inhibit tumor progression by blocking energy supplements, however, the mono-therapeutic modality showed limited curing efficacy due to heterogeneity and abnormal energy metabolism of TNBC. Thus, the development of a synergistic nano-therapeutic modality involving different anti-tumor mechanisms to simultaneously transport medicines to the organelle where metabolism took place, might remarkably improve curing efficacy, targeting ability, and bio-safety. Herein, the hybrid BLG@TPGS NPs were prepared by doping multi-path energy inhibitors Berberine (BBR) and Lonidamine (LND) as well as the chemotherapeutic agent Gambogic acid (GA). Our research indicated that Nanobomb-BLG@TPGS NPs inherited the mitochondria targeting ability from BBR to accumulate precisely at the “energy factory” mitochondria, and then induce starvation therapy to efficiently eradicated cancer cells by coordinately powered off tumor cells via a “three-prone strategy” to cut off mitochondrial respiration, glycolysis, and glutamine metabolism. The inhibition of tumor proliferation and migration was enlarged by the synergistic combination with chemotherapy. Besides, apoptosis via mitochondria pathway and mitochondria fragmentation supported the hypothesis that NPs eliminated MDA-MB-231 cells by violently attacking MDA-MB-231 cells and especially the mitochondria. In summary, this synergistic chemo-co-starvation nanomedicine proposed an innovative site-specific targeting strategy for improved tumor treatment and decreased toxicity to normal tissues, which provided an option for clinical TNBC-sensitive treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.