Abstract

The salivary acinar cells have unique Ca2+ signaling machinery that ensures an extensive secretion. The agonist-induced secretion is governed by Ca2+ signals originated from the endoplasmic reticulum (ER) followed by a store-operated Ca2+ entry (SOCE). During tasting and chewing food a frequency of parasympathetic stimulation increases up to ten fold, entailing cells to adapt its Ca2+ machinery to promote ER refilling and ensure sustained SOCE by yet unknown mechanism. By employing a combination of fluorescent Ca2+ imaging in the cytoplasm and inside cellular organelles (ER and mitochondria) we described the role of mitochondria in adjustment of Ca2+ signaling regime and ER refilling according to a pattern of agonist stimulation. Under the sustained stimulation, SOCE is increased proportionally to the degree of ER depletion. Cell adapts its Ca2+ handling system directing more Ca2+ into mitochondria via microdomains of high [Ca2+] providing positive feedback on SOCE while intra-mitochondrial tunneling provides adequate ER refilling. In the absence of an agonist, the bulk of ER refilling occurs through Ca2+-ATPase-mediated Ca2+ uptake within subplasmalemmal space. In conclusion, mitochondria play a key role in the maintenance of sustained SOCE and adequate ER refilling by regulating Ca2+ fluxes within the cell that may represent an intrinsic adaptation mechanism to ensure a long-lasting secretion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.