Abstract

Mitoapocynin is a triphenylphosphonium conjugated derivative of apocynin that specifically locates to the mitochondria. It has been developed as a mitochondrially targeted therapeutic antioxidant. We attempted to attenuate the mitochondrial ROS induced in H9c2 cardiac myoblast cells treated with norepinephrine. Mitoapocynin was a poor quencher of total ROS as detected by the fluoroprobe DCFH-DA. Using mitochondrial superoxide specific probe MitoSoxRed, we found that 5-10µM mitoapocynin itself induces superoxide over and above that is generated by the norepinephrine treatment. A supposedly control molecule to mitoapocynin, the synthetic compound PhC11TPP, having the triphenylphosphonium group and a benzene moiety with C11 aliphatic chain spacer was also found to be a robust inducer of mitochondrial ROS. Subsequent assays with several cell lines viz., NIH3T3, HEK293, Neuro2A, MCF-7 and H9c2, showed that prolonged exposure to mitoapocynin induces cell death by apoptosis that can be partially prevented by the general antioxidant N-acetyl cysteine. Analyses of mitochondrial electron transport complexes by Blue Native Polyacrylamide gel electrophoresis showed that both mitoapocynin and PhC11TPP disrupt the mitochondrial Complex I and V, and in addition, PhC11TPP also damages the Complex IV. Our data thus highlights the limitations of the therapeutic use of mitoapocynin as an antioxidant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call