Abstract

MITNS (Multiple-Ion Transport Numerical Solver) is a new numerical tool designed to perform 1D simulations of classical cross-field transport in magnetized plasmas. Its detailed treatment of multi-species effects makes it a unique tool in the field. We describe the physical model it simulates, as well as its numerical implementation and performance. Program summaryProgram Title: MITNS (Multiple-Ion Transport Numerical Solver)CPC Library link to program files:http://dx.doi.org/10.17632/9n8fjzxsyn.1Licensing provisions: MITProgramming language: C++, with Python wrapperNature of problem: Classical transport of multiple-species plasma across a magnetic field. This includes the collisional transport of particles, momentum, and heat. These quantities are tracked separately for each particle species. Both ion–ion and ion–electron interactions are included, as is the evolution of the magnetic field.Solution method: The system of PDEs is decomposed into a large system of coupled ODEs. The code uses finite-volume discretization for space. Time integration is done using any of three timestepping methods, including Adams–Moulton and Backwards Differentiation Formula schemes from the CVODE package [1, 2].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call