Abstract

According to the dynamic characteristics of the cascading propagation, we introduce a mitigation mechanism and propose four mitigation methods on four types of nodes. By the normalized average avalanche size and a new measure, we demonstrate the efficiencies of the mitigation strategies on enhancing the robustness of scale-free networks against cascading failures and give the order of the effectiveness of the mitigation strategies. Surprisingly, we find that only adopting once mitigation mechanism on a small part of the overload nodes can dramatically improve the robustness of scale-free networks. In addition, we also show by numerical simulations that the optimal mitigation method strongly depends on the total capacities of all nodes in a network and the distribution of the load in the cascading model. Therefore, according to the protection strength for scale-free networks, by the distribution of the load and the protection price of networks, we can reasonably select how many nodes and which mitigation method to efficiently protect scale-free networks at the lower price. These findings may be very useful for avoiding various cascading-failure-induced disasters in the real world and for leading to insights into the mitigation of cascading failures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call