Abstract

Climate change augments the risk to food security by inducing drought stress and a drastic decline in global rice production. Plant growth-promoting bacteria (PGPB) have been known to improve plant growth under drought stress. Here in the present study, we isolated, identified, and well-characterized eight drought-tolerant bacteria from the rice rhizosphere that are tolerant to 20% PEG-8000. These strains exhibited multiple plant growth-promoting traits, i.e., 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, exopolysaccharide production, phosphate (P)-solubilizing activity (51-356 µg ml-1), indole-3 acetic acid (IAA) production (14.3-46.2 µg ml-1), and production of organic acids (72-178 µg ml-1). Inoculation of bacterial consortium (Bacillus subtilis NM-2, Brucella haematophilum NM-4, and Bacillus cereus NM-6) significantly improved seedling growth and vigor index (1009.2-1100) as compared to non-inoculated stressed plants (630-957). Through rhizoscanning, efficiency of the consortium was validated by improved root parameters such as root length (17%), diameter, and surface area (18%) of all tested genotypes as compared with respective non-inoculated stressed treatments. Furthermore, the response of consortium inoculation on three rice genotypes was positively correlated with improved plant growth and drought stress ameliorating traits by the accumulation of osmoprotectant, i.e., proline (85.8%-122%), relative water content (51%), membrane stability index (64%), and production of antioxidant enzymes to reduce oxidative damage by reactive oxygen species. A decrease in temperature and improved chlorophyll content of inoculated plants were found using infrared thermal imaging and soil plant analyzer development (SPAD), respectively. The key supporting role of inoculation toward stress responses was validated using robust techniques like infrared thermal imaging and an infrared gas analyzer. Furthermore, principal component analysis depicts the contribution of inoculation on stress responses and yield of tested rice genotypes under water stress. The integration of drought-tolerant rice genotype (NIBGE-DT02) and potential bacterial strains, i.e., NM-2, NM-4, and NM-6, can serve as an effective bioinoculant to cope with water scarcity under current alarming issues related to food security in fluctuating climate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.