Abstract

Summary High specific power, high stowed packing efficiency, low processing cost, and high tolerance against environmental threats (high energy and charged particle radiation) make perovskite solar cell (PSC) a promising candidate for power generation in space. However, vacuum, as encountered in space, causes perovskite outgassing, raising concern for its long-term stability. In this work, we find that PSCs (ITO/SnO2/perovskite/Spiro-MeOTAD/Au) degrade ten times faster upon reducing the pressure from 9 × 104 to 5 × 103 Pa during operation, due to acceleration of the perovskite transformation and ion migration. Gas permeability of the layers atop perovskite and mobile ion-induced chemical reactions at charge transporting layers and related interfaces are two critical factors. We develop a PSC structure (ITO/PTAA/perovskite/PCBM/ZnO/AZO/[Ni/Al grid]) that effectively mitigates vacuum and illumination-induced degradation pathways, enabling PSCs to realize a low PCE loss rate of 0.007%/h over 1,037 h at the maximum power point under 100 mW cm−2 illumination at 5 × 103 Pa.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.