Abstract

In stochastic multistable systems driven by the gradient of a potential, transitions between equilibria are possible because of noise. We study the ability of linear delay feedback control to mitigate these transitions, ensuring that the system stays near a desirable equilibrium. For small delays, we show that the control term has two effects: (i) a stabilizing effect by deepening the potential well around the desirable equilibrium and (ii) a destabilizing effect by intensifying the noise by a factor of (1-τα)-1/2, where τ and α denote the delay and the control gain, respectively. As a result, successful mitigation depends on the competition between these two factors. We also derive analytical results that elucidate the choice of the appropriate control gain and delay that ensure successful mitigations. These results eliminate the need for any Monte Carlo simulations of the stochastic differential equations and, therefore, significantly reduce the computational cost of determining the suitable control parameters. We demonstrate the application of our results on two examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.