Abstract

Abstract Hydraulic turbines are operated more frequently at no-load conditions, also known as speed-no-load (SNL), to provide a spinning reserve that can rapidly connect to the electrical grid. As intermittent energy sources gain popularity, turbines will be required to provide spinning reserves more frequently. Previous studies show vortical flow structures in the vaneless space and the draft tube and rotating stall between the runner blades of certain axial turbines operating at SNL conditions. These flow phenomena are associated with pressure pulsations and torque fluctuations which put high stress on the turbine. The origin of the instabilities is not fully understood and not extensively studied. Moreover, mitigation techniques for SNL must be designed and explored to ensure the safe operation of the turbines at off-design conditions. This study presents a mitigation technique with independent control of each guide vane. The idea is to open some of the guide vanes to the best efficiency point (BEP) angle while keeping the remaining ones closed, aiming to reduce the swirl and thus avoid the instability to develop. The restriction is to have zero net torque on the shaft. Results show that the flow structures in the vaneless space can be broken down, which decreases pressure and velocity fluctuations. Furthermore, the rotating stall between the runner blades is reduced. The time-averaged flow upstream of the runner is changed while the flow below the runner remains mainly unchanged.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call