Abstract

Pyrite ${\mathrm{FeS}}_{2}$ is an outstanding candidate for a low-cost, nontoxic, sustainable photovoltaic material, but efficient pyrite-based solar cells are yet to materialize. Recent studies of single crystals have shed much light on this by uncovering a $p$-type surface inversion layer on $n$-type (S-vacancy doped) crystals, and the resulting internal p-n junction. This leaky internal junction likely plays a key role in limiting efficiency in pyrite-based photovoltaic devices, also obscuring the true bulk semiconducting transport properties of pyrite crystals. Here, we demonstrate complete mitigation of the internal p-n junction in ${\mathrm{FeS}}_{2}$ crystals by fabricating metallic ${\mathrm{CoS}}_{2}$ contacts via a process that simultaneously diffuses Co (a shallow donor) into the crystal, the resulting heavy $n$ doping yielding direct Ohmic contact to the interior. Low-temperature bulk transport studies of controllably Co- and S-vacancy doped semiconducting crystals then enable a host of previously inaccessible observations and measurements, including determination of donor activation energies (which are as low as 5 meV for Co), observation of an unexpected second activated transport regime, realization of electron mobility up to $2100\phantom{\rule{0.16em}{0ex}}\mathrm{c}{\mathrm{m}}^{2}\phantom{\rule{0.16em}{0ex}}{\mathrm{V}}^{\text{--}1}\phantom{\rule{0.16em}{0ex}}{\mathrm{s}}^{\text{--}1}$, elucidation of very different mobilities in Co- and S-vacancy-doped cases, and observation of an abrupt temperature-dependent crossover to bulk Efros-Shklovskii variable-range hopping, accompanied by an unusual form of nonlinear Hall effect. Aspects of the results are interpreted with the aid of first-principles electronic structure calculations on both Co- and S-vacancy-doped ${\mathrm{FeS}}_{2}$. This work thus demonstrates unequivocal mitigation of the internal p-n junction in pyrite single crystals, with important implications for both future fundamental studies and photovoltaic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.