Abstract

In this study, a dual chambered microbial fuel cell (MFC) was fabricated for the treatment of tannery wastewater with concurrent production of bio-energy. The tannery effluent acts as an anolyte and a synthetic electrolytic solution as the catholyte. Five electrochemically active bacteria from the biofilm were isolated that showed homology with Klebsiella quasipneumoniae, Klebsiella pneumoniae, Cloacibacterium normanese, Bacillus firmus and Pseudomonas reactans, using 16S rDNA analysis. The physiochemical studies of treated wastewater showcased the 88%, 74% and 94% reduction in COD, BOD and TDS level, respectively. The maximum voltage output and power density obtained using electroactive consortium in MFC was 940 mV and 7371 mW/cm3, respectively. The techno-economic feasibility of the bio-electrochemical system was studied for future bioprospecting. The present study reports a significant power generation with simultaneous effluent treatment up to a maximum of ∼85%, in a sustainable and eco-friendly manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.