Abstract

BackgroundSynaptic dysfunction, characterized by synapse loss and structural alterations, emerges as a prominent correlate of cognitive decline in Alzheimer’s disease (AD). Actin cytoskeleton, which serves as the structural backbone of synaptic architecture, is observed to be lost from synapses in AD. Actin cytoskeleton loss compromises synaptic integrity, affecting glutamatergic receptor levels, neurotransmission, and synaptic strength. Understanding these molecular changes is crucial for developing interventions targeting synaptic dysfunction, potentially mitigating cognitive decline in AD.MethodsIn this study, we investigated the synaptic actin interactome using mass spectrometry in a mouse model of AD, APP/PS1. Our objective was to explore how alterations in synaptic actin dynamics, particularly the interaction between PSD-95 and actin, contribute to synaptic and cognitive impairment in AD. To assess the impact of restoring F-actin levels on synaptic and cognitive functions in APP/PS1 mice, we administered F-actin stabilizing agent, jasplakinolide. Behavioral deficits in the mice were evaluated using the contextual fear conditioning paradigm. We utilized primary neuronal cultures to study the synaptic levels of AMPA and NMDA receptors and the dynamics of PSD-95 actin association. Furthermore, we analyzed postmortem brain tissue samples from subjects with no cognitive impairment (NCI), mild cognitive impairment (MCI), and Alzheimer’s dementia (AD) to determine the association between PSD-95 and actin.ResultsWe found a significant reduction in PSD-95-actin association in synaptosomes from middle-aged APP/PS1 mice compared to wild-type (WT) mice. Treatment with jasplakinolide, an actin stabilizer, reversed deficits in memory recall, restored PSD-95-actin association, and increased synaptic F-actin levels in APP/PS1 mice. Additionally, actin stabilization led to elevated synaptic levels of AMPA and NMDA receptors, enhanced dendritic spine density, suggesting improved neurotransmission and synaptic strength in primary cortical neurons from APP/PS1 mice. Furthermore, analysis of postmortem human tissue with NCI, MCI and AD subjects revealed disrupted PSD-95-actin interactions, underscoring the clinical relevance of our preclinical studies.ConclusionOur study elucidates disrupted PSD-95 actin interactions across different models, highlighting potential therapeutic targets for AD. Stabilizing F-actin restores synaptic integrity and ameliorates cognitive deficits in APP/PS1 mice, suggesting that targeting synaptic actin regulation could be a promising therapeutic strategy to mitigate cognitive decline in AD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.