Abstract

This thesis aimed to develop an effective technique to mitigate the cyclic and seismic loading actions on steel structure by FRP strengthening. Extensive study has been done to understand the structural performance of FRP strengthened steel members, beam-column connections under monotonic and cyclic loading and FRP strengthened steel frames under seismic loading through experimental testing, finite element (FE) modelling and theoretical approach. The developed finite element and theoretical model predicted the structural responses of FRP strengthened steel structures accurately. The results showed that the FRP strengthening can effectively mitigate the cyclic and seismic loading actions on the steel structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.