Abstract

The π-mode resonant frequency of the 1.6 cell SLAC/BNL/UCLA style RF photoinjector electron gun is conventionally tuned using cylindrical copper tuning pieces that extend into the full-cell cavity through holes in the side of the gun. This design begins to fail in many versions of this popular gun design at higher voltage levels, when the cavity undergoes electric breakdown in the vicinity of the tuners. In order to remove the tuners from the region of high electric field, mitigating this problem, one must change the full cell geometry significantly. We have investigated a method for accomplishing this, in which we stretch the gun structure to tune the resonant frequency up by over 2 MHz. We constructed a device to perform this stretching and tested the modified photoinjector in an RF test bed. We succeeded in putting approximately 8.4 MW of RF power into the gun, an improvement over the 4 MW routinely achieved with a similar gun using conventional tuning methods installed at the UCLA Neptune laboratory. Recent results in testing this gun with a magnesium cathode insert are reported as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.