Abstract
The effects of velocity shear on the resistive drift wave instability in the non-adiabatic limit and the toroidal ion temperature gradient instability are investigated for a plasma of inhomogeneous density/ion temperature, respectively. For the resistive drift wave, we find that the instability growth rate decreases monotonically with increasing magnitude of shear, but we find that complete stabilization is impossible. For the ion temperature gradient instability, we find that the standard WKB approximation is insufficient to describe the full behavior of the instability, and that an analysis of the localized eigenmode problem reveals two separate unstable solutions, which the WKB approximation does not predict. The impact of flow shear on these two new unstable solutions is discussed. In both resistive drift wave and ion temperature gradient instabilities, the sheared flow causes a shifting, tilting, and sharpening of the electrostatic potential eddies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.