Abstract

Reactive metabolites have been putatively linked to many adverse drug reactions including idiosyncratic toxicities for a number of drugs with black box warnings or withdrawn from the market. Therefore, it is desirable to minimize the risk of reactive metabolite formation for lead molecules in optimization, in particular for non-life threatening chronic disease, to maximize benefit to risk ratio. This article describes our effort in addressing reactive metabolite issues for a series of 3-amino-2-pyridone inhibitors of BTK, e.g. compound 1 has a value of 459pmol/mg protein in the microsomal covalent binding assay. Parallel approaches were taken to successfully resolve the issues: establishment of a predictive screening assay with correlation association of covalent binding assay, identification of the origin of reactive metabolite formation using MS/MS analysis of HLM as well as isolation and characterization of GSH adducts. This ultimately led to the discovery of compound 7 (RN941) with significantly reduced covalent binding of 26pmol/mg protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.