Abstract

Quantum error correction will be an essential ingredient in realizing fault-tolerant quantum computing. However, most correction schemes rely on the assumption that errors are sufficiently uncorrelated in space and time. In superconducting qubits, this assumption is drastically violated in the presence of ionizing radiation, which creates bursts of high-energy phonons in the substrate. These phonons can break Cooper pairs in the superconductor and, thus, create quasiparticles over large areas, consequently reducing qubit coherence across the quantum device in a correlated fashion. A potential mitigation technique is to place large volumes of normal or superconducting metal on the device, capable of reducing the phonon energy to below the superconducting gap of the qubits. To investigate the effectiveness of this method, we fabricate a quantum device with four nominally identical nanowire-based transmon qubits. On the device, half of the niobium-titanium-nitride ground plane is replaced with aluminum ($\mathrm{Al}$), which has a significantly lower superconducting gap. We deterministically inject high-energy phonons into the substrate by voltage biasing a galvanically isolated Josephson junction. In the presence of the small-gap material, we find a factor of 2--5 less degradation in the injection-dependent qubit lifetimes and observe that the undesired excited qubit state population is mitigated by a similar factor. We furthermore turn the $\mathrm{Al}$ normal with a magnetic field, finding no change in the phonon protection. This suggests that the efficacy of the protection in our device is not limited by the size of the superconducting gap in the $\mathrm{Al}$ ground plane. Our results provide a promising foundation for protecting superconducting-qubit processors against correlated errors from ionizing radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.