Abstract

Magnesium, as the lightest structural metal, has been widely used in the automotive and aerospace industries. Porosity is the main issue in the welding of magnesium alloys and can be caused by surface coatings, hydrogen gas, pre-existing porosity, the collapse of an unstable keyhole and vaporization of alloying elements. In this study, the effect of the oxide layer on pore generation in the welding of AZ31B-H24 magnesium alloy is investigated. A fiber laser with a power of up to 4 kW is used to weld samples in a lap joint configuration. Two groups of samples are studied: as received (AR) surfaces (where an oxide layer remains on the surface) and treated surfaces. The surface treatment includes two techniques: mechanical removal (MR) and the use of a plasma arc (PA) as a preheating source. Also, a separate set of experiments are designed for preheating samples in a furnace in order to investigate whether the pore mitigation effect of a plasma arc is caused by preheating. Observations include a weld bead profile achieved through optical microscopy, chemical compositions tested by Electron Dispersive Spectroscopy (EDS), and mechanical properties measured with a tensile test. The results obtained show that the preheating effect of a plasma arc procedure can effectively mitigate pore generation. The tensile-shear results reveal that PA samples have a higher strength than other groups of samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call