Abstract

Traces of pharmaceuticals of various classes have been reported as emerging pollutants, and they continue to be detected in aquatic environments. The steady growth of pharmaceuticals in water, as well as the related negative consequences, has made it a major priority to discover effective ways for their removal from water. Various strategies have been used in the past in order to address this issue. Recently, nanotechnology has emerged as a topic of intense interest for this purpose, and different technologies for removing pharmaceuticals from water have been devised and implemented, such as photolysis, nanofiltration, reverse osmosis, and oxidation. Nanotechnological approaches including adsorption and degradation have been comprehensively examined in this paper, along with the applications and limits, in which various types of nanoparticles, nanocomposites, and nanomembranes have played important roles in removing these pharmaceutical pollutants. However, this review focuses on the most often used method, adsorption, as it is regarded as the superior approach due to its low cost, efficiency, and ease of application. Adsorption kinetic models are explained to evaluate the effectiveness of nano-adsorbents in evaluating mass transfer processes in terms of how much can be adsorbed by each method. Several robust metals, metal oxides, and functionalized magnetic nanoparticles have been highlighted, classified, and compared for the removal of pharmaceuticals, such as non-steroidal, anti-inflammatory and antiretroviral drugs, from water. Additionally, current research difficulties and prospects have been highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call