Abstract

The present study was designed to elucidate whether exogenously applied sulphur (S) (S1; 100 ppm, S2; 200 ppm S) alleviate lead (Pb)-induced (Pb1; 100 ppm, Pb2; 200 ppm and Pb3; 300 ppm Pb) stress in the leaves of Brassica juncea. To study this effect, oxidative stress biomarkers (hydrogen peroxide and malondialdehyde), enzymatic antioxidants (ascorbate peroxidase (APX), glutathione reductase (GR)), non-enzymatic antioxidants (chlorophyll and carotenoids) and S-metabolic enzymes like adenosine triphosphate sulfurylase (ATPS), O-acetylserine(thiol)lyase (OASTL) were studied. Pb treatment dramatically inhibited plant development by increasing lipid peroxidation and hydrogen peroxide (H2O2) accumulation by 34.82 and 238.89 % respectively at 90 days plant. The overproduced oxidative biomarkers alter plant cell homeostasis. In contrast, APX (25.56 %) and GR (32.45 %) activities, chlorophyll (15.51 %) and carotenoids (30 %) contents increased under similar Pb treatments and regulated ROS-antioxidant balance. Exogenous S application, maintained the redox status of cell by further increasing the enzymatic activities. Pbtreatment increased S assimilation in Brassicaby elevating enzyme activities of ATPS andOASTL, which was further augmented by S supplementation toPb-stressed plants. Besides gene expression of BjSULT, BjOASTL and BjGR1 exhibited slight increase under Pb stress, S application to the stressed plants doubled the expression and assisted the stress resistance. Overall, our findings demonstrate that S protect Pb-stressed Brassica seedlings, implying that S could be an ideal choicefor reducing Pb toxicity in crops.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call