Abstract
A non-evaporative technique is used to mitigate damage sites with lateral sizes in a range from 50 μm to 400 μm and depths smaller than 100 μm. The influence of the pulse frequency of a CO2 laser on the mitigation effect is studied. It is found that a more symmetrical and smooth mitigation crater can be obtained by increasing the laser pulse frequency form 0.1 to 20 kHz. Furthermore, the sizes of laser-affected and distorted zones decrease with the increase of the laser pulse frequency, leading to less degradation of the wave-front quality of the conditioned sample. The energy density of the CO2 laser beam is introduced for selecting the mitigation parameters. The damage sites can be successfully mitigated by increasing the energy density in a ramped way. Finally, the laser-induced damage threshold (LIDT) of the mitigated site is tested using 355 nm laser beam with a small spot (0.23 mm2) and a large spot (3.14 mm2), separately. It is shown that the non-evaporative mitigation technique is a successful method to stop damage re-initiation since the average LIDTs of mitigated sites tested with small or large laser spots are higher than that of pristine material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.