Abstract
Rural communities are affected by gaseous emissions from intensive livestock production. Practical mitigation technologies are needed to minimize emissions from stored manure and improve air quality inside barns. In our previous research, the one-time surficial application of biochar to swine manure significantly reduced emissions of NH3 and phenol. We observed that the mitigation effect decreased with time during the 30-day trials. In this research, we hypothesized that bi-weekly reapplication of biochar could improve the mitigation effect on a wider range of odorous compounds using a larger scale and longer trials. The objective was to evaluate the effectiveness of biochar dose and reapplication on mitigation of targeted gases (NH3, odorous, volatile organic compounds VOCs, odor, greenhouse gases (GHG)) from stored swine manure on a pilot-scale setup over 8-weeks. The bi-weekly reapplication of the lower biochar dose (2 kg/m2) showed much higher significant percentage reductions in emissions for NH3 (33% without and 53% with reapplication) and skatole (42% without and 80% with reapplication), respectively. In addition, the reapplication resulted in the emergence of a statistical significance to the mitigation effect for all other targeted VOCs. Specifically, for indole, the percentage reduction improved from 38% (p = 0.47, without reapplication) to 78% (p = 0.018, with reapplication). For phenol, the percentage reduction improved from 28% (p = 0.71, without reapplication) to 89% (p = 0.005, with reapplication). For p-cresol, the percentage reduction improved from 31% (p = 0.86, without reapplication) to 74% (p = 0.028, with reapplication). For 4-ethyl phenol, the percentage emissions reduction improved from 66% (p = 0.44, without reapplication) to 87% (p = 0.007, with reapplication). The one-time 2 kg/m2 and 4 kg/m2 treatments showed similar effectiveness in mitigating all targeted gases, and no statistical difference was found between the dosages. The one-time treatments showed significant percentage reductions of 33% and 42% and 25% and 48% for NH3 and skatole, respectively. The practical significance is that the higher (one-time) biochar dose may not necessarily result in improved performance over the 8-week manure storage, but the bi-weekly reapplication showed significant improvement in mitigating NH3 and odorous VOCs. The lower dosages and the frequency of reapplication on the larger-scale should be explored to optimize biochar treatment and bring it closer to on-farm trials.
Highlights
Livestock production always plays a very important role in our daily life
The objective of this study is to evaluate the effectiveness of highly alkaline and porous (HAP) biochar reapplication and dose on mitigation of targeted gases (NH3, greenhouse gases (GHG), and odorous volatile organic compounds (VOCs)) from stored swine manure on a pilot-scale setup over eight weeks
Still, no statistically significant impacts were found on the mitigation of odor and GHGs
Summary
Livestock production always plays a very important role in our daily life. This industry provides millions of people with jobs and food. Along with all the benefits of livestock production, unwanted gas emissions, such as ammonia (NH3), greenhouse gases (GHG), volatile organic compounds (VOCs), and odor are raising world-wide concerns regarding their impact on the environment [1]. NH3 emissions are a major nitrogen (N) pollutant and responsible for the formation of secondary particulate matter (PM2.5) aerosols. GHGs, such as carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), are related to concerns about climate change [2]. VOCs, such as phenolics, fatty acids, sulfur-containing compounds, are major contributors to the odorous emissions from the swine barns [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.