Abstract

Emerging pollutants (such as micropollutants, microplastics) and pathogens present in wastewater are of rising concern because their release can affect the natural environment and drinking water resources. In this decade, with increasing numbers of small-scale decentralized wastewater systems globally, the status of emerging pollutant and pathogen mitigation in the decentralized wastewater treatment processes has received more attention. This state-of-the-art review aims to discuss the mitigation efficiencies and mechanisms of micropollutants, microplastics, and pathogens in single-stage and hybrid decentralized wastewater treatment processes. The reviewed results revealed that hybrid wastewater treatment facilities could display better performance compared to stand-alone facilities. This is because the multiple treatment steps could offer various microenvironments, allowing incorporating several mitigation mechanisms (such as sorption, degradation, filtration, etc.) to remove complicated emerging pollutants and pathogens. The factors (such as system operation conditions, environmental conditions, wastewater matrix) influencing the removals of emerging pollutants from wastewater in these systems have been further identified. Nevertheless, it was found that very limited research work focused on synergised or conflicted effects of operation conditions on various emerging pollutants naturally present in the wastewater. Meanwhile, effective, reliable, and rapid analysis of the emerging pollutants and pathogens in the complicated wastewater matrix is still a major challenge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.