Abstract

The collapse of transient bubble clouds near a solid surface was investigated to test a scheme for mitigation of cavitation-induced damage. The target was a porous ceramic disk through which air could be forced. Transient cavitation bubbles were created using a shock-wave lithotripter focused on the surface of the disk. The dynamics of bubble clouds near the ceramic disks were studied for two boundary conditions: no back pressure resulting in surface free of bubbles and 10 psi (0.7 atm) of back pressure, resulting in a surface with a sparse (30% of area) bubble layer. Images of the cavitation near the surface were obtained from a high-speed camera. Additionally, a passive cavitation detector (3.5 MHz focused acoustic transducer) was aligned with the surface. Both the images and the acoustic measurements indicated that bubble clouds near a ceramic face without a bubble layer collapsed onto the boundary, subsequently leading to surface erosion. When a sparse bubble layer was introduced, bubble clouds collapsed away from the surface, thus mitigating cavitation damage. The erosion damage to the ceramic disks after 300 shock waves was quantified using micro-CT imaging. Pitting up to 1 mm deep was measured for the bubble-free surface, and the damage to the bubble surface was too small to be detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.