Abstract
Explosions generate overpressures that can cause irreparable damage to structures. For many buildings, especially critical infrastructure, continued operation after an explosive attack is essential. The use of energy-dissipating methods will enable the protection of a structure and occupants from a blast and permit the timely repair and re-occupation of the building after an event. The concept behind the system presented is the creation of panels that can be used as cladding for structures. The panels are connected to the main structure using energy-dissipating component assemblies around the panel edge. When subjected to a blast load the panels transfer the blast pressure through the assemblies, thereby reducing the forces transmitted to the underlying structure. After an event, the panels and energy-dissipating component assemblies can be replaced quickly and easily, allowing the building to be reoccupied in a short time after an attack. This study focuses on the characterization of energy-dissipating component assemblies using static and dynamic laboratory testing. A predictive theory, supported by a single degree of freedom model, is developed and a general evaluation method proposed. Further laboratory testing expands the characterization of behaviour of the assemblies through experiments, with a blast generator in tension tests and in simulated blast panel tests. The time histories developed from tension tests are then compared to examine the effect of loading rate. The investigations on blast panels also include a comparison with predictions to determine whether the latter can describe the global behaviour of the system. Lastly, the response of the energy-dissipating component assemblies is evaluated in full-scale field blast tests on cladding panels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.