Abstract

Reverse osmosis (RO) membrane has been widely used in various water treatment fields as an efficient desalination technology, but serious biofouling problem arises in the actual application process. Curcumin is known as a natural compound that can reduce biofouling by inhibiting the growth of microorganisms based on quorum sensing. Dopamine, a molecule with excellent adhesion and functionalization on the material's surface, has high research value for applying a curcumin coating to the membrane surface. Curcumin degrades under alkaline conditions, whereas dopamine must polymerize under alkaline conditions. Simultaneously, a coating may adversely affect curcumin. Therefore, a two-step coating process was considered by self-polymerizing dopamine on the thin-film composite membrane surface and then dip-coating curcumin attached to the polydopamine layer. Furthermore, the effect of time and concentration on the surface modification before and after membrane modification was investigated. The highest permeability of 1.39 L/m2/hr/bar was achieved with the modified membranes. The number of gram-positive bacteria decreased from 6.71 × 106 to 9.67 × 105 CFU/mL. This result is meaningful for antifouling through modification of the membrane surface. Use of curcumin can be applied to reduce biofouling and extend the lifetime of the membrane without pretreatment or membrane cleaning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.