Abstract
The role of indole-3-acetic acid (IAA) and hydrogen peroxide (H2O2) crosstalk in regulating metal stress is still less known. Herein, role of IAA in alleviating arsenate (AsV) toxicity in brinjal seedlings along with its probable relation with endogenous H2O2 was investigated. Arsenate hampered root growth due to greater accumulation of As and decrease in phosphorus uptake that resulted into inhibited photosynthesis and cell death. Further, AsV induced oxidative stress markers and damage to macromolecules (lipids and proteins) due to alterations in redox status of glutathione as a result of inhibition in activity of glutathione synthetase and glutathione reductase. However, application of IAA with AsV improved root growth by significantly declining As accumulation and oxidative stress markers, sequestrating As into vacuoles, and improving redox status of glutathione which collectively protected roots from cell death. Interestingly, addition of diphenylene iodonium (DPI, an inhibitor of NADPH oxidase) further increased AsV toxicity even in the presence of IAA. However, application of H2O2 rescued negative effect of DPI. Overall, the results suggested that in IAA-mediated mitigation of AsV toxicity in brinjal roots, endogenous H2O2 might have acted as a downstream signal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.