Abstract

The application of static magnetic field perturbations to a tokamak plasma is observed to alter the dynamics of high-frequency bursting Alfvén modes that are driven unstable by energetic ions. In response to perturbations with an amplitude of δB/B∼0.01 at the plasma boundary, the mode amplitude is reduced, the bursting frequency is increased, and the frequency chirp is smaller. For modes of weaker bursting character, the magnetic perturbation induces a temporary transition to a saturated continuous mode. Calculations of the perturbed distribution function indicate that the 3D perturbation affects the orbits of fast ions that resonate with the bursting modes. The experimental evidence represents an important demonstration of the possibility of controlling fast-ion instabilities through "phase-space engineering" of the fast-ion distribution function, by means of externally applied perturbation fields.

Highlights

  • The application of static magnetic field perturbations to a tokamak plasma is observed to alter the dynamics of high-frequency bursting Alfven modes that are driven unstable by energetic ions

  • For modes of weaker bursting character, the magnetic perturbation induces a temporary transition to a saturated continuous mode

  • Calculations of the perturbed distribution function indicate that the 3D perturbation affects the orbits of fast ions that resonate with the bursting modes

Read more

Summary

Introduction

Mitigation of Alfven Activity in a Tokamak by Externally Applied Static 3D Fields The application of static magnetic field perturbations to a tokamak plasma is observed to alter the dynamics of high-frequency bursting Alfven modes that are driven unstable by energetic ions. In response to perturbations with amplitude δB/B ∼ 0.01 at the plasma boundary, the mode amplitude is reduced, the bursting frequency is increased, and the frequency chirp is smaller. For modes of weaker bursting character, the magnetic perturbation induces a temporary transition to a saturated continuous mode.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call