Abstract

Abstract A combined conventional and vacuum process was introduced as a new baking technology to mitigate acrylamide and 5-hydroxymethylfurfural (HMF) in biscuits in this study. Firstly, these processes were compared for acrylamide and HMF formations, drying rate, and browning development at different temperatures. Acrylamide concentrations in biscuits attained during vacuum baking were significantly lower than those attained during conventional baking at all temperatures studied (p Industrial relevance The study has been performed in the course of the FP7 project PROMETHEUS that aimed to develop new or alternative technologies for the mitigation of thermal processing contaminants in foods. Mitigation of thermal processing contaminants, especially acrylamide in heated foods has been an intensive area of research in the last decade. It was confirmed repeatedly by many researchers that increasing processing temperature also increases the formation rates of those undesired compounds. Therefore, one approach to mitigate them is to lower temperature during processing. However, this is not viable practically, because lowering temperature requires longer time to achieve desired final moisture contents in the final product. The approach presented in this manuscript takes the advantage of faster drying of biscuits during heating under vacuum. Using the combination of conventional par-baking with vacuum post-baking seems to produce safer biscuits than the conventional counterparts in terms of their acrylamide and HMF contents. At industrial level vacuum application has been used in bread processing for cooling purposes. In that case, breads are cooled rapidly after baking in semi-continuous vacuum chambers. As implementation of vacuum application into the process has already been practiced, it is likely that partially baked biscuits could be post-baked for short times in semi-continuous vacuum chambers maintained at specified conditions. To the best of our knowledge, such combined baking process has not been investigated to date for the mitigation of thermal processing contaminants in biscuits. So, it is believed that the results of present manuscript would be interesting for bakery industry dealing with the above-mentioned safety problem, but also for the readers of this journal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call