Abstract

The increase in toxic heavy metal pollutants in rice paddies threatens food safety. There is an urgent need for lnow-cost remediation technology for immobilizing these trace metals. In this study, we showed that the application of the soil microbial fuel cell (sMFC) can greatly reduce the accumulation of Cd, Cu, Cr, and Ni in the rice plant tissue. In the sMFC treatment, the accumulation of Cd, Cu, Cr, and Ni in rice grains was 35.1%, 32.8%, 56.9% and 21.3% lower than the control, respectively. The reduction of these elements in the rice grain was due to their limited mobility in the soil porewater of soils employing the sMFC. The restriction in Cd, Cu, Cr, and Ni bioavailability was ascribed to the sMFC ability to immobilize trace metals through both biotic and abiotic means. The results suggest that the sMFC may be used as a promising technique to limit toxic trace metal bioavailability and translocation in the rice plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.