Abstract

Ocean acidification (OA) is a global problem to marine ecosystems. Cadmium (Cd) is a typical metal pollutant, which is non-essential but extremely toxic to marine organisms. The combined effects of marine pollution and climate-driven ocean changes should be considered for the effective marine ecosystem management of coastal areas. Previous reports have separately investigated the influences of OA and Cd pollution on marine organisms. However, little is known of the potential combined effects of OA and Cd pollution on marine diatoms. We investigated the sole and combined influences of OA (1500 ppm CO2) and Cd exposure (0.4 and 1.2 mg/L) on the coastal diatom Skeletonema costatum. Our results clearly showed that OA significantly alleviated the toxicity of Cd to S. costatum growth and mitigated the oxidant stress, although the intercellular Cd accumulation still increased. OA partially rescued S. costatum from the inhibition of photosynthesis and pyruvate metabolism caused by Cd exposure. It also upregulated genes involved in gluconeogenesis, glycolysis, the citrate cycle (TCA), Ribonucleic acid (RNA) metabolism, and especially the biosynthesis of non-protein thiol compounds. These changes might contribute to algal growth and Cd resistance. Overall, this study demonstrates that OA can alleviate Cd toxicity to S. costatum and explores the potential underlying mechanisms at both the cellular and molecular levels. These results will ultimately help us understand the impacts of combined stresses of climate change and metal pollution on marine organisms and expand the knowledge of the ecological risks of OA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.