Abstract

Effects of different soil amendments were investigated on methane (CH4) and nitrous oxide (N2O) emissions, global warming potential (GWP) and yield scaled GWPs in paddy soils of Republic of Korea, Japan and Bangladesh. The experimental treatments were NPK only, NPK+fly ash, NPK+silicate slag, NPK+phosphogypsum(PG), NPK+blast furnace slag (BFS), NPK+revolving furnace slag (RFS), NPK+silicate slag (50%)+RFS (50%), NPK+biochar, NPK+biochar+Azolla-cyanobacteria, NPK+silicate slag+Azolla-cyanobacteria, NPK+phosphogypsum (PG)+Azolla-cyanobacteria. The maximum decrease in cumulative seasonal CH4 emissions was recorded 29.7% and 32.6% with Azolla-cyanobacteria plus phospho-gypsum amendments in paddy soils of Japan and Bangladesh respectively, followed by 22.4% and 26.8% reduction with silicate slag plus Azolla-cyanobacteria application. Biochar amendments in paddy soils of Japan and Bangladesh decreased seasonal cumulative N2O emissions by 31.8% and 20.0% respectively, followed by 26.3% and 25.0% reduction with biochar plus Azolla-cyanobacteria amendments. Although seasonal cumulative CH4 emissions were significantly increased by 9.5–14.0% with biochar amendments, however, global warming potentials were decreased by 8.0–12.0% with cyanobacterial inoculation plus biochar amendments. The maximum decrease in GWP was calculated 22.0–30.0% with Azolla-cyanobacteria plus silicate slag amendments. The evolution of greenhouse gases per unit grain yield (yield scaled GWP) was highest in the NPK treatment, which was decreased by 43–50% from the silicate slag and phosphogypsum amendments along with Azolla-cyanobacteria inoculated rice planted soils. Conclusively, it is recommended to incorporate Azolla-cyanobacteria with inorganic and organic amendments for reducing GWP and yield scaled GWP from the rice planted paddy soils of temperate and subtropical countries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.