Abstract
Severe geomagnetic disturbances (GMDs) increase the magnitude of the electric field on the Earth’s surface (E-field) and drive geomagnetically-induced currents (GICs) along the transmission lines in electric grids. These additional currents can pose severe risks, such as current distortions, transformer saturation and increased reactive power losses, each of which can lead to system unreliability. Several mitigation actions (e.g., changing grid topology) exist that can reduce the harmful GIC effects on the grids. Making such decisions can be challenging, however, because the magnitude and direction of the E-field are uncertain and non-stationary. In this paper, we model uncertain E-fields using the distributionally robust optimization (DRO) approach that determines optimal transmission grid operations such that the worst-case expectation of the system cost is minimized. We also capture the effect of GICs on the nonlinear AC power flow equations. For solution approaches, we develop an <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">accelerated</i> column-and-constraint generation (CCG) algorithm by exploiting a special structure of the support set of uncertain parameters representing the E-field. Extensive numerical experiments based on “epri-21” and “uiuc-150” systems, designed for GMD studies, demonstrate (i) the computational performance of the accelerated CCG algorithm, (ii) the superior performance of distributionally robust grid operations that satisfy nonlinear, nonconvex AC power flow equations and GIC constraints, in comparison with standard stochastic programming-based methods during the out-of-sample testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.