Abstract

This paper reports on a preliminary study using EutelSat Hotbird 13A beacon data at 19.7 GHz and 29.5 GHz (scaled data) to evaluate the benefit of using Time Diversity (TD) and Maximal Ratio Combining (MRC) on an experimental next generation Ka-band (26.5–40 GHz) satellite link in the UK. The authors have used the 2nd generation of video broadcasting via satellite (DVB-S2) as the broadcasting standard to investigate the novel integration of TD and MRC. The benefit of the TD and MRC scheme was quantified in terms of percentage enhancement of the link availability. Long-term statistics of rain and atmospheric attenuation were derived from a period of three year’s measurements made in Pontypridd, South Wales and in Chilbolton, England, at 19.7 GHz. A hypothetical Ka-band satellite broadcast link between Pontypridd and Chilbolton has been designed to use 29.5 GHz as the uplink frequency while 19.7 GHz is used as the downlink frequency. The paper discusses the performance enhancement provided by TD and MRC during different types of fading events. The integration of TD and MRC into the DVB-S2 standard provides the capability to continue delivering services at lower carrier-to-noise (C/N) levels by lowering the bit error rate (BER).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.