Abstract

Opioid use disorder (OUD) is a critical public health crisis in the United States, affecting >5.5 million Americans in 2021. Machine learning has been used to predict patient risk of incident OUD. However, little is known about the fairness and bias of these predictive models. The aims of this study are two-fold: (1) to develop a machine learning bias mitigation algorithm for sociodemographic features and (2) to develop a fairness-aware weighted majority voting (WMV) classifier for OUD prediction. We used the 2020 National Survey on Drug and Health data to develop a neural network (NN) model using stochastic gradient descent (SGD; NN-SGD) and an NN model using Adam (NN-Adam) optimizers and evaluated sociodemographic bias by comparing the area under the curve values. A bias mitigation algorithm, based on equality of odds, was implemented to minimize disparities in specificity and recall. Finally, a WMV classifier was developed for fairness-aware prediction of OUD. To further analyze bias detection and mitigation, we did a 1-N matching of OUD to non-OUD cases, controlling for socioeconomic variables, and evaluated the performance of the proposed bias mitigation algorithm and WMV classifier. Our bias mitigation algorithm substantially reduced bias with NN-SGD, by 21.66% for sex, 1.48% for race, and 21.04% for income, and with NN-Adam by 16.96% for sex, 8.87% for marital status, 8.45% for working condition, and 41.62% for race. The fairness-aware WMV classifier achieved a recall of 85.37% and 92.68% and an accuracy of 58.85% and 90.21% using NN-SGD and NN-Adam, respectively. The results after matching also indicated remarkable bias reduction with NN-SGD and NN-Adam, respectively, as follows: sex (0.14% vs 0.97%), marital status (12.95% vs 10.33%), working condition (14.79% vs 15.33%), race (60.13% vs 41.71%), and income (0.35% vs 2.21%). Moreover, the fairness-aware WMV classifier achieved high performance with a recall of 100% and 85.37% and an accuracy of 73.20% and 89.38% using NN-SGD and NN-Adam, respectively. The application of the proposed bias mitigation algorithm shows promise in reducing sociodemographic bias, with the WMV classifier confirming bias reduction and high performance in OUD prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.