Abstract

Salinity stress in estuarine environments poses a significant challenge for microalgal survival and proliferation. The interaction between microalgae and bacteria shows promise in alleviating the detrimental impacts of salinity stress on microalgae. Our study investigates this interaction by co-cultivating Chlorella sorokiniana, a freshwater microalga, with a marine growth-promoting bacterium Pseudomonas gessardii, both of which were isolated from estuary. In this study, bacteria were encapsulated using sodium alginate microspheres to establish an isolated co-culture system, preventing direct exposure between microalgae and bacteria. We evaluated microalgal responses to different salinities (5 PSU, 15 PSU) and interaction modes (free-living, gel-encapsulated), focusing on growth, photosynthesis, cellular metabolism, and extracellular polymeric substances (EPS) properties. High salinity inhibited microalgal proliferation, while gel-fixed interaction boosted Chlorella growth rate by 50.7 %. Both attached and free-living bacteria restored Chlorella's NPQ to normal levels under salt stress. Microalgae in the free-living interaction group exhibited a significantly lower respiratory rate compared to the pure algae group (−17.2 %). Increased salinity led to enhanced EPS polysaccharide secretion by microalgae, particularly in interaction groups (19.7 %). Both salt stress and interaction increased the proportion of aromatic proteins in microalgae's EPS, enhancing its stability by modulating EPS glycosidic bond C-O-C and protein vibrations. This alteration caused microalgal cells to aggregate, free-living bacteria co-culture group, and fixed co-culture group increasing by 427.5 %, 567.1 %, and 704.1 %, respectively. In gel-fixed bacteria groups, reduced neutral lipids don't accumulate starch instead, carbon redirects to cellular growth, aiding salt stress mitigation. These synergistic activities between salinity and bacterial interactions are vital in mitigating salinity stress, improving the resilience and growth of microalgae in saline conditions. Our research sheds light on the mechanisms of microalgal-bacterial interactions in coping with salt stress, offering insights into the response of estuarine microorganisms to global environmental changes and their ecological stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.