Abstract

Transformation optics has revolutionized our approach to material design in several scientific disciplines by determining the material properties that implement the desired effects of a coordinate transformation. Unfortunately, the performance of several coordinate-based devices, such as beam splitters and invisibility cloaks, suffers from the necessary implementation of singularities with extreme material parameters. Here, we make use of transformation optics to eliminate these singularities in an isotropic way for the improvement of coordinate-based metamaterial waveguides. In particular, singularities that lead to vanishing material properties are softened with a global rescaling of the coordinates, while singular terms that lead to infinite material properties are strategically replaced by well-behaved curve factors. Detailed full-wave simulations confirm that the resulting waveguide devices are as efficient as their singular counterparts despite the fact that they consist of materials with much more moderate optical properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.