Abstract

PARAFAC is a popular model for trilinear data analysis in analytical chemistry. The prerequisite for the successful application of PARAFAC in analytical chemistry is that the three-way data array should follow a trilinear model, which is always violated by the presence of deviations such as Rayleigh scattering in fluorescence spectroscopy. In order to mitigate the influence of model deviations, background constraining and iterative correcting techniques are advocated in this contribution. The method established on these two techniques can nearly eliminate the effect of model deviation on the chemical loading parameters estimated. Compared with other methods for mitigating model deviations, the proposed method requires no prior knowledge about the chemical loading parameters. It is also unnecessary to assign weights to data entities as the weighted PARAFAC of Anderson does. Its implementation is comparable to PARAFAC-ALS and can be programmed to be completely automatic. Its performance has been demonstrated by fluorescent and chromatographic experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call