Abstract

Rechargeable Mg-ion Batteries (RMB) containing a Mg metal anode offer the promise of higher specific volumetric capacity, energy density, safety, and economic viability than lithium-ion battery technology, but their realization is challenging. The limited availability of suitable inorganic cathodes compatible with electrolytes relevant to Mg metal anode restricts the development of RMBs. Despite the promising capability of some oxides to reversibly intercalate Mg+2 ions at high potential, its lack of stability in chloride-containing ethereal electrolytes, relevant to Mg metal anode hinders the realization of a full practical RMB. Here the successful in situ encapsulation of monodispersed spherical V2O5 (≈200nm) is demonstrated by a thin layer of VS2 (≈12nm) through a facile surface reduction route. The VS2 layer protects the surface of V2O5 particles in RMB electrolyte solution (MgCl2 + MgTFSI in DME). Both V2O5 and V2O5@VS2 particles demonstrate high initial discharge capacity. However, only the V2O5@VS2 material demonstrates superior rate performance, Coulombic efficiency (100%), and stability (138mAhg-1 discharge capacity after 100 cycles), signifying the ability of the thin VS2 layer to protect the V2O5 cathode and facilitate the Mg+2 ion intercalation/deintercalation into V2O5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.