Abstract

The cross-point array architecture with resistive synaptic devices has been proposed for on-chip implementation of weighted sum and weight update in the training process of learning algorithms. However, the non-ideal properties of the synaptic devices available today, such as the nonlinearity in weight update, limited ON/OFF range and device variations, can potentially hamper the learning accuracy. This paper focuses on the impact of these realistic properties on the learning accuracy and proposes the mitigation strategies. Unsupervised sparse coding is selected as a case study algorithm. With the calibration of the realistic synaptic behavior from the measured experimental data, our study shows that the recognition accuracy of MNIST handwriting digits degrades from ~97 % to ~65 %. To mitigate this accuracy loss, the proposed strategies include 1) the smart programming schemes for achieving linear weight update; 2) a dummy column to eliminate the off-state current; 3) the use of multiple cells for each weight element to alleviate the impact of device variations. With the improved synaptic behavior by these strategies, the accuracy increases back to ~95 %, enabling the reliable integration of realistic synaptic devices in the neuromorphic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.