Abstract
SummaryDistributed denial of service (DDoS) attacks have for the last two decades been among the greatest threats facing the internet infrastructure. Mitigating DDoS attacks is a particularly challenging task as an attacker tries to conceal a huge amount of traffic inside a legitimate traffic flow. This article proposes to use data mining approaches to find unique hidden data structures which are able to characterize the normal traffic flow. This will serve as a mean for filtering illegitimate traffic under DDoS attacks. In this endeavor, we devise three algorithms built on previously uncharted areas within mitigation techniques where clustering techniques are used to create geographical clusters in regions which are likely to contain legitimate traffic. We argue through extensive experimental results that establishing clusters around this narrative is a superior solution to clustering algorithms which rely on bitwise distances between IP addresses. In addition, the DDoS filtering algorithm is deployed in a virtual Linux environment using Nfqueue and tested in a simulated real‐life DDoS attack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Concurrency and Computation: Practice and Experience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.